

Indian Institute of Technology Guwahati [†]

Supervisor: Peter Shanahan¹, Bipul Bhuyan.[†]

In collaboration with Hongyue Duyang² and Sanjib Mishra ²

1 Fermilab, ² University of South Carolina.

NOvA (NuMI Off-Axis v_e Appearance)

- NOvA is a long baseline two detector neutrino oscillation experiment.
- Two functionally identical detector differ in size.
- Uses a 2 GeV v_{μ} beam of intensity 450 kW currently.
- Looks for oscillations in v_e appearance and v_μ disappearance mode.

For more on NovA:

- \triangleright ν_e Appearance Analysis, E. Niner
- $\succ \nu_{\mu}$ Disappearance Analysis, M. Baird

NOvA Detectors

NOvA Detector's capability

Event Topologies at NOvA

Particle Identifications at NOvA

LID: Longitudinal Identification

- Distribution of Artificial Neural Network (ANN) to identify nueCC events.
 - This method uses shower-shape based likelihoods for particle hypotheses calculated from dE/dx information

We use data driven technique to benchmark PID algorithms and simulation of EM shower at NOvA

Using Cosmic Rays to Study Electron Selection

Cosmic-ray induced showers:

 Bremsstrahlung(Brem) shower: Energetic Muon looses the energy via EM interaction in media.

❖ Why Cosmic Brem Shower:

- Plenty of Cosmic EM shower in Nova FD detector, 72kHz
- Shower can mimic signal of v_e appearance mode.
- Provide statistically rich test samples of pure EM showers.
- Check the multivariate v_e ID algorithm including:
 - Efficiency.
 - Fiducial cut.
 - Monitor detector for EM shower reconstruction.

A 500µ sec cosmic trigger event display

Shower finding and extraction

- We developed a criteria based on energy deposition in planes along the muon track.
- Find shower on basis of energy deposition in planes.
- Define a shower regions:
 - Shower start.
 - Shower end.
- Remove all the hits out of the shower regions.
- Remove only muon mip in the shower region.

A muon with brem shower

Brem shower example

Event display of raw hits of a cosmic track candidate with Electromagnetic (EM) Bremsstrahlung (Brem) Shower.

Brem Shower hits extracted

Event display of hits of the EM shower after the removal of hits associated with the muon track from NOvA simulations.

Extracted Brem Shower variables

Data and MC comparison of shower energy after reconstruction. A very good agreement of data and MC.

Data and MC comparison of shower angle. Good agreement of data and MC.

Shower variables vs v_e

Data and MC comparison of shower energy after reconstruction. A very good agreement of data and MC.

Brem shower energy in comparison with v_e MC events. Brems are less energetic to v_e events.

Brem shower angle in comparison with v_e MC events. Brems are more perpendicular to direction of beam than v_e events.

Shower reweighted to ve

Most of the difference in Brem events and v_e events comes from difference in energy and angle distributions.

A 2D reweighting matrix is constructed and used to reweight brem shower energy and angle to v_e CC events to make for these differences.

Particle Identification ANN (LID)

Data and MC comparison of electron identification ANN (LID) . Good agreement of data and MC. Most of the Brem are identified as v_e like.

How Brems are identified in comparison to v_e events.

LID after reweight

Most of the Brems are identified as v_e like. But to benchmark the PID and simulations Brem should reasonably be similar to v_e . We achieved this by reweighting.

After reweighting Brem energy and angle to v_e events, Brems do look more like v_e events. This convinces us that Brem can be used as data driven benchmark for testing PIDs and EM shower simulations at NO $_{\nu}$ A

PID Efficiency X, Y and Z in detector.

PID efficiencies as a function of vertex X, Y and Z direction in NOvA. Efficiencies are reasonably flat and data and MC agreement is well with in 5%. Rest of the difference will be taken as a part of systematics.

Conclusion

- ✓ Using Muon Removal algorithm (MR) we find and isolate EM Shower from cosmic data and MC.
- ✓ A good agreement of data and MC is seen using cosmic EM showers.
- \checkmark A v_e reweight method is developed to make cosmic EM showers resemble beam events.
- ✓ A data-driven technique to benchmark the particle identifications and simulations of EM showers using Brem sample.
- ✓ PID efficiencies, as a function of positions, agree within 5 %, indicating calibration effects are well controlled.

Backup

Brem Shower example

Event display of raw hits of a cosmic track candidate with Electromagnetic (EM) Bremsstrahlung (Brem) Shower from NOvA

4/9/2015 Nitin vadav Fermilab/riTG 19

Brem Shower extracted

Event display of hits of the EM shower after the removal of hits associated with the muon track from NOA simulation. What left are hits of Brem shower.

4/9/2015 20